Large and small intestines have a remarkably similar wall structure. The reduced mechanical strength of strictly mucosal sutures stems from the small amount of connective tissue and collagen fibers in the mucosal layer.
Comprising connective tissue with a three-dimensional collagen fiber lattice and elastic meshes, the submucosa constitutes the “load-bearing” part of the intestinal sutures in all parts of the digestive tract. The muscularis layer is also a reliable suture bed, while the serosal covering assures a gas- and fluid-proof seal through fibrin exudation within just 4- 6 hours after intestinal suturing.
Due to various special characteristics and an increased complication rate, the colon plays a unique role. (The large intestine plays a special role here. Its complication rate is higher because of various characteristics). This is due to low collateral circulation, the lack of serosal covering on parts of the ascending and descending colon and on the entire extraperitoneal rectum, and a lower mural collagen concentration in the large intestine with higher collagenase activity. In addition, since the concentration of bacteria increases by a factor of 10 million, there is a greater risk of infection. And anaerobes are 1,000 times more common in the large intestine than aerobic bacteria.